IMMUNOLOGY

CHANGES IN ANTIGENIC PROPERTIES OF TISSUES OF WHITE RATS IN RADIATION SICKNESS

R. V. Petrov and L. I. Ilyina(Moscow)

(Received May 30, 1955. Presented by N. N. Zhukov-Verezhnikov, Member Acad. Med. Sci. USSR)

Every animal or plant species has its own special type of biosynthesis, which leads to the elaboration of the proteins specific to a given species; this specifity applies in particular to their antigenic properties.

It is known that different kinds of changes in protein metabolism lead to changes in their antigenic properties, and N. N. Zhukov-Verezhnikov [2, 3] has studied the problem of the significance of changes in immunospecificity of cells and tissues. L. A. Zilber and V. D. Timakov [5] have shown that new antigens arise in human tissues in certain chronic diseases. O. E. Vyazov [1], V. A. Karev [7], and others have demonstrated changes in antigenic properties of tissues during ontogenesis. V. A. Parnes [13] has found that specific antigens appear in leukemia. Finally, changes in antigenic properties of tissues have been established during growth of tumors by L. A. Zilber [4], I. N. Maisky [12], P. N. Kosyakov [9], and others.

There are numerous references in the literature [11, 14, 15] to the effect of ionizing radiation on protein metabolism in animals. Although this should be associated with changes in the antigenic properties of tissues, we have not found any published work on this subject.

EXPERIMENTAL METHODS

We applied the method of active anaphylaxis and desensitization introduced by L. A. Zilber [6]. Since the changes in metabolism are the most marked in the nuclear proteins of irradiated animals [10, 17], we made separate studies of the antigens of cell nuclei and cytoplasm.

The antigens studied were taken from the nuclei of cells of the liver and jejunal mucosa of albino rats, as well as from the cytoplasm of liver cells of normal rats and of rats subjected to total irradiation (dose 800 r), and killed 3-5 days later. The cell nuclei and cytoplasm were prepared by Dounce's method [16], and the nuclei were dissolved in 0.005 N NaOH before the experiments. The cytoplasmic material was dissolved in physiological saline. The solutions contained 10 mg of protein per ml; the protein content was derived from the nitrogen content, as determined by a micro-Kjeldahl method.

Guinea pigs were sensitized by subcutaneous injections of the antigens, and development of sensitization was tested 21-30 days later by intravenous injection of the antigen into a fore or hind limb.

Guinea pigs sensitized with antigens from normal rats were desensitized with the corresponding antigens from irradiated rats, and vice versa. Having checked the completeness of desensitization, we gave challenging doses of the antigen used for sensitization. An interval of 1-2 hours was allowed between the two intravenous injections.

The anaphylactic reaction was evaluated according to the following: infrequent scratching of the nose and sneezing ±, repeated scratching of the nose and sneezing +, the same, to a more marked degree, with cough ++, scratching of the nose, sneezing, cough, involuntary evacuation of urine and feces, convulsions +++, death of the animal ++++, absence of reaction -.

	Sensitized with Desensitized with									Challenging injection		
					ection	2nd	in-	3rd		ا		
of guinea		dose (mg protein				ject	ion	jec	tion			
ුණි	antigen	50	antigen	60	· p=4	ein		ain	lн	antigen	nie	덡
g		E		百年	i, or	rot	Lioï	rot(ţ	J	rot	iji.
No.		xe.		dose (mg protein)	reaction	mg proteir	reaction	mg protei	reaction		ng protein	reaction
		ਚ			법	H	<u> </u>	E	11		<u> B.</u>	A
	Nuclei of		Nuclei from	l	İ					Nuclei of cells	'	
2	cells from	10	the jejunal	1,5	++	3		4		from the jeju-	4	+++
3 4	the jejunal	10 10	mucosa of	2 1,5	1	4	++ 	}		nal mucosa of	3	+
5	mucosa of	10	irradiated	2	++	4 3	_			normal rats	4	+ `
	normal rats		rats				-	1				
	Nuclei		Nuclei from			Ī	<u> </u>	Ī		Nuclei from	İ	
13	fromliver	10	liver cells	3	<u>.</u>	4				liver cells of	4	1_
14	cells of	10	of irradi-	3	 +	4	_			normal rats	4	<u> </u>
15	normal rats	10	ated rats	3	+	4	干干	4			5	<u> </u>
16 17		10 10		3 3 3 3		4	土	4			4 5 5 4	1
18		10	ļ	3	-	4					6	+ + + +
19		10		3	+	4	-				4	土
	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	!	<u> </u>	<u> </u>	
	Nüclei from		Nuclei of			1			1	Nuclei from	1	
7	the jejunal	10	cells from	1.5 1.5	++	3	_		•	the jejunal	4	 .
8	muçosa of	10	the jejunal	$\frac{1.5}{2}$	+	3 2 4	_			mucosa of irra-	3 5	
10	irradiated	10		1,5	+	4	+	4		diated rats	5	
	rats		normal rats	,	'		·			,		
	Nuclei from		Nuclei from			ĺ			i—	Muclei from	i	
21	liver cells	10	liver cells	1	,	, ,	,	0		liver cells of	c	
22	of irradia-	10		2	 	2.5	土	2 .		irradiated rats	$\frac{0}{2.5}$	
23	ted rats	10	rats	2 2.5	 -	3.5			ţ		6 2.5 5.5 5.5	
24 25		10		3 1.5	++	3.5	_				5.5 4	
26		10		2.5	+	1.5 2.5 3.5 3.5 2.5					4	
27		10		3	++	3,5	-	}			4	
									<u> </u>			
	Cytoplasm		Cytoplasm							Cytoplasm fron	ľ	
30	from liver	25		2.5 2.5	+++	5				liver cells of	5	+++
31 32	cells of nor-	25	cells of irra-	2.5	++	5	-			normal rats	7.5 7.5	++
33	mal rats	25 25	diated rats	2.5 2.5	 	5 5 5 2.5				*	7.5	+++
34		25		2,5 1,25 1,25 2,5 2,5 2,5	+-	5	_				6	+ ' '
35 36		25 25		1,25	土工	2.5	+	7,5	-		7,5	++-
36 37 38		25 25		2.5	III.	6					5 2,5 3,5	+ +
38		25		2.5	++	6					3.5	++
	1	l l				<u> </u>						
***	Cytoplasm		Cytoplasm							Cytoplasm from		
40 41	from liver	25 25	from liver	1,25	++	3.5				liver cells of	5 5	+,
42	cells of	25	cells of	2.5	+ +	5	士	5		irradiated rats	10	++ ±
43 44	normal rats		normal rats	1.25 2.5 2.5 2.5	十,	3.5 5.5 3.5 3.5 5					3.5	Ŧ
45		25 25		2.5 1.25	++	ე. ე 5	主	5			7.5 5	丰
46		25		1,5	++	3.5	<u>+++</u>	5	_		10 3.5 7.5 5 7.5	++
												,

EXPERIMENTAL RESULTS

The results are presented in the Table.

The results for the guinea pigs used as sensitization controls are not included in the Table; they all gave strong anaphylactic reactions to the challenging doses of antigen, with a fatal issue in some cases. The results for tests of toxicity of the preparations are also not given in the Table; in no case did any visible reaction follow injection of the antigens into unsensitized animals.

The upper part of the Table, down to No. 27, shows changes in antigenic properties of nuclear proteins of liver and jejunal mucosa cells of rats suffering from radiation sickness. It is evident that full desensitization of guinea pigs sensitized to antigens from the nuclei of normal rats is not achieved by injection of the corresponding antigens from irradiated rats; the rats react positively to challenging injections of antigen. Conversely, rats sensitized to nuclear antigens from the same tissues of irradiated rats can be fully desensitized by injections of the corresponding antigens from normal rats, and do not react positively to challenging doses of the sensitizing antigen.

It may hence be concluded that the nuclei of liver and jejunal mucosa cells of irradiated rats contain fewer antigenic complexes than do those of normal rats.

The lower part of the Table, beginning with No. 30, shows changes in the antigenic properties of the cyto-plasm of liver cells. It appears that sensitization to cytoplasmic antigens of irradiated rats cannot be fully suppressed by injections of the corresponding preparation from normal rats, and that similarly rats sensitized with cytoplasmic antigen from normal rats are not fully desensitized by corresponding preparations from irradiated animals. It follows that not only is the number of cytoplasmic antigenic complexes of liver cells reduced following irradiation, but also that new ones, not present in normal animals, make their appearance.

We have thus been able, by means of the reactions of anaphylaxis and desensitization, to demonstrate changes in the antigenic properties of cells of animals suffering from radiation sickness.

It is not clear what part, if any, these changes play in the pathogenesis of radiation sickness. It is conceivable that, in view of the enhanced permeability of tissues encountered in radiation sickness [8], antigenically modified proteins may enter the blood stream and produce immunological reactions of the organism, from formation of antibodies to development of sensitization to these antigens. This question is of considerable theoretical and practical importance.

LITERATURE CITED

- [1] O. E. Vyazov, Uspekhi sovr. Biol., 33, No. 1, 47-63 (1952).
- [2] N. N. Zhukov-Verezhnikov, Uspekhi sovr. Biol., 18, No. 1, 93-104 (1944).
- [3] N. N. Zhukov-Verezhnikov, Transactions of the XII All-Union Congress of Hygienists, Epidemiologists, Microbiologists, and Infectious Diseases Specialists, (In Russian) (Moscow, 1949) Vol. 2, pp. 49-55.
 - [4] L. A. Zilber, Zhur. Mikrobiol., Epidemiol. i Immunol., 1950, No. 10, 15-22.
 - [5] L. A. Zilber, and V. D. Timakov, ibid., 1952, No. 1, 8-13.
- [6] L. A. Zilber, V. B. Freiman, I. B. Zbarsky, and S. S. Debov, Doklady Akad. Nauk SSSR, 65, No. 1, 97-100 (1949).
 - [7] V. A. Karev, Byull. eksptl. Biol. i Med., 1954, No. 8, 56-60.
- [8] P. N. Kiselev, Biological Action of Ionizing Radiation, and the Dosimetry and Application of Radioactive Materials to Therapy (In Russian) (Moscow, 1954) pp. 5-15.
- [9] P. N. Kosyakov, Antigenic Substances of the Body, and Their Significance in Biology and Medicine (In Russian) (Moscow, 1954).
 - [10] A. M. Kuzin, and E. V. Budilova, Doklady Akad. Nauk SSSR, 91, No. 5, 1183-1186 (1953).

- [11] L. F. Larionov, Vestn. Rentgenoî. i Radiol., 1954, No. 2, 3-6.
- [12] I. N. Maisky, Biological Principles of Anti-Cancer Immunity (In Russian) (Moscow, 1955).
- [13] V. A. Parnes, Zhur. Mikrobiol., Epidemiol., i Immunobiol., 1950, No. 10, 22-27.
- [14] L. F. Semenov, Changes in Tissue Nucleoproteins Following Action of x-Rays on the Body; Mechanism of Action of X-Rays on Tissues (In Russian) (Abstract of Dissertation, Leningrad, 1952).
 - [15] R. Abrams, Arch. Biochem., 30, 90-99 (1951).
 - [16] A. L. Dounce, J. Biol. chem., 147, 685-698 (1943).
 - [17] R. N. Feinstein, and C. L. Butler, Proc. Soc. Exper. Biol. and Med., 79, 181-182 (1952),